公開セミナー SEMINARS

HOME > セミナー

第317回化学システム工学専攻公開セミナー Personalized Medicine Development and The Global Healthspan Extension Initiative

日時
2018年3月5日(月) 15:00~16:00
場所
東京大学 臨床研究棟A(CRC) 9階 談話室(914) 
講演題目 Personalized Medicine Development and The Global Healthspan Extension Initiative
講演者 Zhaxybay Zhumadilov MD, Ph.D. D.M.Sc.
(Nazarbayev University, Astana, Kazakhstan)
概要 In the past key discoveries in biomedical research and emerging sciences have the potential to significantly improve human health quality, healthspan extension and overcome many health challenges. As a result many countries are increasing the resources dedicated to establishing centers of excellence and innovative technology clusters in order to be able to create global scale, competitiveness and new industries.

The Nazarbayev University of Kazakhstan aims to become a globally recognized institution of teaching, research and clinical excellence. Life Sciences Center of Nazarbayev university conducted several research programs and projects related to personalized medicine and further development of proactive strategy of healthy aging. Indeed to get significant healthspan extension we need some mandatory resources to be identified: Addressed Health Challenges, Integrated Biomarkers, Validated Technologies, Regulatory Framework. Considering the main global trend of biomedical research, innovations in collaboration with the UK partners we initiated the Healthspan extension program. It will pioneer a new paradigm of health care system, innovative business model and global leading hub in terms of establishing foundations for personalized medicine, biomedical industry and other new industries as well as to create the favorable regulatory environment and incentives.
世話人 脇原 徹(内線27368)

第316回化学システム工学専攻公開セミナー Estimation of Fugitive Emission Rates and Occupational Air Concentration in Chemical Process Design

日時
2018年2月27日(火) 10:00~11:00
場所
東京大学工学部3号館大会議室1(6C07号室)
講演題目 Estimation of Fugitive Emission Rates and Occupational Air Concentration in Chemical Process Design
講演者 Dr. Mimi Haryani Hassim
Associate Professor, Centre of Hydrogen Energy/ Department of Chemical Engineering, Universiti Teknologi Malaysia.
概要 EU directives, such as the IPPC requires inclusion of SHE analyses in process design as part of sustainable strategies in process development. In petrochemical industries, the most significant contributor to atmospheric releases is fugitive emissions. Fugitive emissions are not only a concern to economy and environment, but also a major source of background exposure to workers that may lead to various diseases including cancer. Each year more people die from occupational diseases than being killed in industrial accidents. Therefore the estimation of occupational air concentration due to fugitive emission needs to be done early when developing a new process. Operating plants regularly measure release and concentration levels through a plant-monitoring program.
However for processes which are still ‘on paper’, predictive estimation methods are needed. Therefore in this work, new user-friendly methods for quantifying fugitive emission rate and occupational air concentration are presented. Three methods are proposed for early design stages based on data available from simple piping flow diagrams (PFDs), detailed PFDs or piping and instrumentation diagrams (PIDs). The methods are demonstrated on a real industrial case study of benzene production in Borealis Polymers Oy plant at Porvoo, Finland.
世話人 杉山 弘和(内線27227)

第315回化学システム工学専攻公開セミナー 有機EL材料の基礎

日時
2018年3月1日(木) 15:00~16:00
場所
東京大学工学部3号館大会議室2(6C06号室)
講演題目 有機EL材料の基礎
講演者 出光興産株式会社 電子材料部 電子材料開発センター
川上 宏典 氏
概要 有機半導体材料を電子デバイスへ応用し、 産業として価値のある商品とするためには、有機合成の知見のみでなく、半導体デバイスや成膜プロセスに関する技術的な知見を盛り込んだ分子を設計する必要がある。電子デバイスの知見は主に性能向上につながり、成膜プロセスの知見は主に低コスト化つながる。本セミナーでは有機EL材料の分子設計を行う際に考慮すべき基本的な技術知見について幅広く紹介する。
世話人 辻 佳子(内線20909)

第314回化学システム工学専攻公開セミナー Progress in Continuous Pharmaceutical Manufacturing and Technoeconomic Optimization

日時
2018年2月19日(月) 10:30~12:00
場所
東京大学工学部3号館大会議室1(6C07号室)
講演題目 Progress in Continuous Pharmaceutical Manufacturing and Technoeconomic Optimization
講演者 Dr Dimitrios I. Gerogiorgis
Lecturer, Institute for Materials & Processes (IMP), School of Engineering, University of Edinburgh, UK
概要 Continuous Pharmaceutical Manufacturing (CPM) emerges as a ground-breaking technology which can invigorate the global pharmaceutical industry by sustainably fostering its agility and the affordability of healthcare for large populations: advances in continuous organic synthesis routes which induce demonstrations of full (end-to-end) continuous pharmaceutical production and comparative economic analyses explicitly illustrate CPM advantages, thus attracting the strong interest of global pharmaceutical corporations and authoritative regulatory bodies. Remarkable corporate investments in production-scale CPM facilities illustrate the value of this novel paradigm.

This lecture will focus on our successful applications of process systems engineering methodologies (process synthesis, modelling, simulation and optimisation) towards evaluating technical efficiency, environmental impact and economic viability of several new continuous processes for manufacturing Active Pharmaceutical Ingredients (APIs) of high importance (ibuprofen, artemisinin, diphenhydramine, cyclosporine), based on relevant continuous flow synthesis precedents. Original process design, economic and environmental impact results will be presented.
世話人 杉山 弘和(内線27227)

第313回化学システム工学専攻公開セミナー 化石燃料から持続可能なエネルギーの転換を可能にする触媒反応の基礎的研究

日時
2018年1月10日(水) 14:00~15:30
場所
東京大学工学部3号館6階6C02小会議室1
講演題目 化石燃料から持続可能なエネルギーの転換を可能にする触媒反応の基礎的研究
講演者 高鍋和広
Professor, King Abdullah University of Science and Technology (KAUST) KAUST Catalysis Center (KCC) Physical Sciences and Engineering Division (PSE)
概要 触媒は、人類が直面するエネルギーおよび二酸化炭素問題を根本から解決できうる物質であり、化学プロセスの高効率化と環境負荷低減を可能にする。エネルギー問題は従来の化石資源から再生可能エネルギーへの移行の過渡期にあり、様々な反応の触媒化学の研究は今後益々重要度を増すと考えられる。触媒研究の知見は、反応速度・生成物選択性・触媒寿命を決定するのに重要であるが、特に固体触媒はその活性点の複雑さと直接分析手法の欠如からそれらの理解は依然乏しく、原子・分子レベルでの反応機構の理解とそれに基づいた更なる高活性化を目指した触媒デザインが望まれる。これらを達成するため、我々の研究の方針として、厳密な速度論解析、触媒および反応場の物理化学的特性の抽出と定量化、および反応中触媒構造観測の手法確立を基に研究を遂行している。本発表ではいくつかの反応と触媒を例に、当研究室で行っている分子レベルでの固体触媒の理解の現状と、熱触媒・電極触媒・光触媒の相互的かつ相補的理解への試みを紹介する。
世話人 酒井 康行(内線27073)

第312回化学システム工学専攻公開セミナー 天然物生合成とその生物活性予測に関する情報学的研究

日時
2017年12月21日(木) 13:00~14:30
場所
東京大学工学部3号館6階6C07号
講演題目 天然物生合成とその生物活性予測に関する情報学的研究
講演者 小寺正明
東京工業大学 生命理工学院 生命理工学系 講師
概要 医薬品開発のシーズの多くは天然化合物であり、その生合成経路の解明は創薬だけでなく工学的視点からも重要である。しかしながら、構造は明らかだが生合成経路が不明な天然物は非常に多く、しかも増加傾向にある。その解明は熟練の研究者の知識と経験に基づいた試行錯誤的実験で行われる。この現状は薬理活性・毒性に関しても、あるいは天然物を介した生態中での生物間相互作用に関しても同様である。私はこれらの分野において不必要な実験の数を減らすことを理想とし、情報学的視点から支援する方法の研究を行なってきた。
これらの分野の共通の課題として、化合物の効果的な数学的表現がある。私はKCF-S という整数ベクトルを考案し、生合成経路予測、毒性予測の双方において既存のベクトルを上回る予測性能を得た。
生合成予測に関しては、構造既知天然物間をつなぐ酵素反応を予測する化学構造変換テンプレート非依存の機械学習法を開発した。天然物データベースが質量ともに向上している昨今、このアプローチの重要性は増してきている。また一方で、化学構造変換テンプレート依存の手法として、土壌微生物による化学製品分解に特化した予測法の実装も行なった。
毒性予測に関しては、機械学習を用いて医薬品化合物の化学構造からその標的タンパク質および副作用を予測する手法の開発を行なった。また併用禁忌や、併用されることの多い薬の組合せから、その特徴抽出や予測を行なった。最新の論文では公共データベースに記載の医薬品副作用情報だけでなく、細胞に投与した際の遺伝子発現変化なども利用し実験による検証も行っている。
生物間相互作用に関しては、日本の蝶と食草および植物性化合物のデータを収集し情報学的解析を行ない、食草選択に対する化合物の影響を定量化した。
今後は、天然物や医薬品に限らず幅広い化学製品に対して合成前からの毒性予測を可能とし化学製品の開発コストを下げるなど、理論的研究を通じた化学工業の高効率化を展開したい。
世話人 酒井 康行(内線27073)

第308回化学システム工学専攻公開セミナー(第2回レジリエンス工学インターナショナルセミナー) マルチスケール・マルチフィジクスシミュレーション “Particle shape effect on packing and flow behavior of granular materials” “Numerical study of particle-fluid flows: From fundamentals towards industrial applications”

日時
2017年12月13日(水) 13:00~14:45
場所
東京大学工学部8号館502輪講室
講演題目 マルチスケール・マルチフィジクスシミュレーション “Particle shape effect on packing and flow behavior of granular materials” “Numerical study of particle-fluid flows: From fundamentals towards industrial applications”
講演者 Dr. Zongyang Zhou
Senior Lecturer, Monash University
Dr. Shibo Kuang
Reseach Fellow, Monash University
概要 "Granular Flow in Particulate Systems with Ellipsoidal Particles"
by Dr. Zongyan Zhou
Particle shape is one of the most important properties of particles, and it affects the packing and flow structures that are critical to transport properties such as permeability related to pore connection and thermal conductivity related to particle connection. Particle shape can be regular or irregular. To be more quantitative, recent studies are focused on particles of well-defined shapes. In particular, ellipsoids have attracted a lot of attention in recent years as it can represent a large number of shapes, e.g. from platy to elongated. In this paper, we give a brief review of our research on ellipsoidal particles on the basis of discrete element method, and examine the effects of particle shapes in some typical particulate systems, including: (1) particle packing, focusing on how aspect ratio affects packing density and structure for coarse and fine ellipsoids; (2) granular flow in hopper and rotating drums, demonstrating the dependence of discharging rate of hopper flow on particle shapes, and flow regimes with particle shape varying; (3) sandpile formation, focusing on how aspect ratio affects the angle of repose, stress dip distribution and segregation; and (4) gas or liquid fluidization, illustrating how particle shape affects the bed permeability, orientation, and bed flow/force structures. The results show that discrete element method for ellipsoids provides a useful approach to investigate shape effect on the behavior of granular materials, and elucidate the further understanding of granular flow in particulate systems.

"Numerical study of particle-fluid flows: From fundamentals toward industrial applications"
by Dr. Shibo Kuang
Understanding and quantifying the particle-fluid flows are of paramount importance to the design, control and optimization of particulate and multiphase processes widely encountered in many industries. It represents a longstanding challenge in the multiphase research community. In recent years, numerous numerical approaches have been developed to tackle this challenge at different time and length scales, with the support of experimental measurements. These approaches, for particles, can be at a sub-particle scale (e.g. lattice Boltzmann simulation), a particle scale (e.g., discrete element method), or a macro scale (e.g. two-fluid model). In this talk, we will discuss our efforts in developing and applying different scaled approaches to understand the fundamentals underlying particle-fluid flows as well as quantify the effects of some pertinent variables on the flows and performance, which aims at achieving efficient flow systems associated with different engineering processes, ultimately. The particles involved can be solid particles, solute dissolved in water, droplets, or bubbles. The focuses will be on particle transportation by a Newtonian or non-Newtonian fluid, particle separation by hydrocyclones or during water desalination, and reacting flow in ironmaking blast furnaces. Also, future developments will be briefly discussed.

備考:
オーストラリア・Monash大学のZongyang Zhou博士、Shibo Kuang博士をお招きしてのセミナーを、レジリエンス工学研究センター(担当:酒井幹夫准教授)主催、当専攻共催という形で開催します。
詳細はこちらをご覧ください。
世話人 杉山 弘和(内線27227)

第311回化学システム工学専攻公開セミナー 高濃度電解液の機能開拓と二次電池革新の可能性

日時
2017年11月27日(月) 13:00~14:30
場所
東京大学工学部3号館6階6C06号
講演題目 高濃度電解液の機能開拓と二次電池革新の可能性
講演者 山田裕貴
東京大学大学院工学系研究科化学システム工学専攻 助教
概要 二次電池によるエネルギー貯蔵は、電気自動車の普及による化石燃料使用量の削減や変動する自然エネルギーの有効利用に向けた中核的技術の一つとなっている。このような高い社会的・経済的価値を生み出す二次電池の実現のためには、優れた電極材料の開発に加えて、性能や安全面などにおいてさまざまな付加価値を提供する新規電解質材料系の開拓が必要である。
近年、新たな機能性電解液系として、高い濃度のアルカリ金属塩を含む高濃度電解液の研究が活発化している。本講演では、高濃度電解液が示す特異な機能・物性について、イオン配位状態の観点から議論するとともに、二次電池革新の可能性を含む将来展望について述べる。
世話人 山田 淳夫(内線27295)

第310回化学システム工学専攻公開セミナー The long winding route towards silicon-based Li-ion batteries

日時
2017年11月21日(火) 14:30~16:00
場所
東京大学工学部3号館6階6C06,6C07室
講演題目 The long winding route towards silicon-based Li-ion batteries
講演者 Dr. Diminique Guyomard
Director of Research at CNRS,
Head of the "Electrochemical Energy Storage and Transformation" Department of the IMN, France
概要 Silicon is a very promising alternative to the graphite anode, as it possesses a theoretical gravimetric capacity of 3579 mAh.g-1 (mAh per g-Si), which is much higher than the 372 mAh.g-1 of graphite. However, a large capacity fade is observed during cycling due to the large volume change of this material. Our strategy on silicon negative electrodes is to focus on low cost synthesis routes and/or modification of cheap commercial samples. Our strategy is also to couple multi-characterization techniques to obtain deep comprehension of the reaction and failure mechanism, in order to optimize the performance and especially the cycle life.In this presentation, we review our recent strategies in order to improve the cyclability of low cost silicon electrodes. We show results on the CMC binder grafting on silicon particles, the analysis of SEI composition and mechanism of SEI formation, the influence of silicon surface chemistry, the use of nanostructured copper current collectors, the development of ball-milled nanostructured silicon electrodes, the nanoscale STEM-EELS imaging of silicon electrodes upon cycling, and a film maturation process that further improves the performance of silicon electrodes whatever the type of silicon, binder and conductive agent. We also identify the end-of-life mechanism that is different in half cell and in full cell.
世話人 山田 淳夫(内線27295)

第306回化学システム工学専攻公開セミナー Surface Chemistry in Heterogeneous Asymmetric Catalysis

日時
2017年11月17日(金) 11:00~12:30
場所
東京大学工学部3号館6階6B04室
講演題目 Surface Chemistry in Heterogeneous Asymmetric Catalysis
講演者 Prof. Peter McBreen
CCVC and Department of Chemistry, Laval University, Quebec City, Canada
概要 Modification of metal surfaces through the adsorption of chiral molecules is a method to create catalytic sites for enantioselective reactions. The chiral molecule is referred to as a chiral modifier by analogy to the term chiral auxiliary used in homogeneous asymmetric catalysis. In this presentation, we will describe combined experimental and theoretical surface studies of individual complexes formed between chiral modifiers and prochiral reactants on a platinum surface. Our work is inspired by the catalysis literature on the enantioselective hydrogenation of activated ketones on cinchona-modified Pt catalysts.
Using scanning tunneling microscopy (STM) imaging and density functional theory (DFT) calculations, we probe the structure and relative abundances of non-covalently bonded surface complexes formed between (R)-(+)-1-(1-naphthyl)ethylamine and representative prochiral molecules.
Each prochiral molecule is found to adopt multiple complexation configurations around the ethylamine group. The structures reveal the hierarchy of chemisorption and, sometimes multiple, H-bonding interactions involved. While the principal intermolecular interaction is NH…O bonding, relative abundances are determined by secondary CH…O or CF3…H interactions. Submolecularly resolved STM images permit the determination of the prochiral ratio (pr) induced by the chiral modifier.
Sequential STM measurements on individual fluxional complexes show that binding states can interconvert through prochiral inversion as well as other processes. The complexation state-specific information on structure, prochirality, dynamics and energy barriers, delivered by the combination of DFT and STM, provides insight on chirality transfer in heterogeneous catalysis (1-3).

(1) Dong, Y.; Goubert, G.; Groves, M. N.; Lemay, J.-C.; Hammer, B.; McBreen, P. H. Acc. Chem. Res. 2017, 50, 1163-1170.
(2) Goubert, G.; Dong, Y.; Groves, M. N.; Lemay, J.-C.; Hammer, B.; McBreen, P. H. Nat. Chem. 2017, 9, 531-536.
(3) Dong, Y.; Svane, K. L.; Lemay, J.-C., McBreen, P. H. ACS Catal. 2017, 7, 1757-1765.
世話人 S. Ted Oyama(内線20712)