HOME > セミナー

第392回化学システム工学専攻公開セミナー Real time monitoring and control of downstream processing of biopharmaceuticals

講演題目Real time monitoring and control of downstream processing of biopharmaceuticals
講演者Prof. Alois Jungbauer
Department of Biotechnology
University of Natural Resources and Life Sciences Vienna
(BOKU), Austria
Austrian Centre of Industrial Biotechnology
概要The biopharmaceutical industry is still running in batch mode, mostly because it is a highly regulated industry sector. In the past, sensors were not readily available and in-process control was mainly executed off-line. The most important product parameters are quantity, purity and potency besides adventitious agents and bioburden. In order to ensure the quality of pharmaceuticals initiatives such as Process Analytical Technologies, Quality by Design and Continuous Integrated Manufacturing have been established. The vision must be that these initiatives together with technology development pave the way for process automation and autonomous bioprocessing without any human intervention. Then a real-time release would be realized leading to a highly predictive and robust biomanufacturing system. The steps toward such automated and autonomous bioprocessing will be presented in context of monitoring and control. Starting from statistical treatment of single and multiple sensors, establishing soft sensors with predictive chemometrics and hybrid models. A scenario is described how to integrate soft sensors and predictive chemometrics into modern process control. This will be exemplified by selective downstream processing steps such as chromatography and membrane filtration, the most common unit operations for separation of biopharmaceuticals.
世話人Sara Badr(内線26876)

第391回化学システム工学専攻公開セミナー Plasmonic Colloidosomes of Black Gold For Solar Energy Harvesting and CO2 To Fuel Conversion

講演題目Plasmonic Colloidosomes of Black Gold For Solar Energy Harvesting and CO2 To Fuel Conversion
講演者Prof. Vivek Polshettiwar
Department of Chemical Sciences, Tata Institute of Fundamental Research
(TIFR), Mumbai, India.
概要The catalytic conversion of CO2 into valuable solar fuels and chemicals is an appealing way to recycle carbon while addressing global warming and the energy issue. In this regard, we discovered a range of Dendritic Fibrous Nano-Silica (DFNS),1,2 based catalysts and CO2 sorbents, such as Black Gold3, Defective Catalyst4,5, Solid Acids6, Lithium Silicates Nanosheets7, Magnesium8 and Ni3N Nanosheets9. In this talk, I will discuss solar energy harvesting and CO2 utilization, using the concept of “Black Gold”. We transformed yellow gold into black gold by changing the size and gaps between gold nanoparticles supported on DFNS.3 Black gold harvest board band light of the solar spectrum, the entire visible region, as well as in the near-infrared region. We have then shown nickel-laden black gold catalysts with a very high photocatalytic CO production rate (2464 ± 40 mmolgNi-1h-1), 95 % selectivity and stable for at least 100 h.10 The role of plasmon excitation (& hot electrons-holes) was studied by: (1) light intensity-dependent production rate, (2) wavelength-dependent
production rate, (3) kinetic isotope effect (KIE), (4) light intensity-dependent photocatalytic quantum efficiencies, (5) competitive CO2 hydrogenation in the presence of electron quencher, methyl-p-benzoquinone (MBQ), and (6) nanosecond transient absorption spectroscopy. The molecular reaction mechanism of CO2 hydrogenation was studied by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS).10 Black Gold-Ni also catalyzes several other challenging reactions, such as H2 dissociation, C-Cl bond activation, and propene & acetylene hydrogenation.11

1. V. Polshettiwar, Acc. Chem. Res., 55, 1395 (2022).
2. A. Maity, R. Belgamwar, V. Polshettiwar Nature Protocol, 14, 2177 (2019).
3. M. Dhiman, A. Maity, A, Das, R. Belgamwar, B. Chalke, Y. Lee, K. Sim, J. M. Nam, V. Polshettiwar, Chemical Science 10, 6694 (2019).
4. A. K. Mishra, R. Belgamwar, R. Jana, A. Datta, V. Polshettiwar Proc. Natl. Acad. Sci. U.S.A 117, 6383 (2020).
5. R. Belgamwar, R. Verma, T. Das, S. Chakraborty, P. Sarawade, V. Polshettiwar, J. Am. Chem. Soc., 145, 8634-8646 (2023).
6. A. Maity, S. Chaudhari, J. J. Titman, V. Polshettiwar Nature Comm. 11, 3828 (2020).
7. R. Belgamwar, A. Maity, T. Das, S. Chakraborty, C. P. Vinod, V. Polshettiwar Chemical Science, 12, 4825 (2021).
8. S. A. Rawool, R. Belgamwar, R. Jana, A. Maity, A. Bhumla, N. Yigit, A. Datta, G. Rupprechter, V. Polshettiwar, Chemical Science, 12, 5774 (2021).
9. S. Singh, R. Verma, N. Kaul, J. Sa, A. Punjal, S. Prabhu, V. Polshettiwar, Nature Commun. 14, 2551 (2023).
10. R. Verma, R. Belgamwar, P. Chatterjee, R. B. Vadell, J. Sá, V. Polshettiwar, ACS Nano, 17, 4526 (2023).
11. R. Verma, R. Tyagi, V. K. Voora, V. Polshettiwar, ACS Catal. 13, 7395 (2023).
世話人高鍋 和広(内線21195)

第390回化学システム工学専攻公開セミナー Application of mechanistic and data-driven models to continuous tablet manufacturing with knowledge of pharmaceutical science

2023年5月31日(水) 13:30-14:30
工学部11号館 ハセコークマホール
講演題目Application of mechanistic and data-driven models to continuous tablet manufacturing with knowledge of pharmaceutical science
講演者Dr. Kensaku Matsunami
Postdoctoral researcher, Ghent University
概要Process systems engineering plays a critical role in the process design of continuous tablet manufacturing, which is a novel technology. Numerous researchers have worked on process simulation using both mechanistic and data-driven models. Toward efficient process design, it is important to select appropriate modeling techniques and interpret the results based on knowledge of pharmaceutical science. This seminar will give different types of modeling studies in continuous tablet manufacturing, which I have performed through my Ph.D. at the University of Tokyo and my postdoctoral research at Ghent University. As an example of mechanistic modeling, population balance models have been applied to the simulation of particle size distributions in wet granulation. Hybrid and surrogate modeling approaches will extend the applicability of models to different active pharmaceutical ingredients and real-time release testing. Furthermore, an in-depth understanding of material properties as well as unit operations can help with model development and interpretation.
世話人杉山 弘和(内線27227)

第389回化学システム工学専攻公開セミナー 標的指向型高速クリック反応素子の開発と生体分子への応用

2023年6月12日(月) 9:00-10:00
工学部5号館7階 第4輪講室
講演者寺 正行
東京農工大学大学院工学研究院 准教授(テニュアトラック)

第388回化学システム工学専攻公開セミナー 世界の環境・食料問題に貢献する化学システム工学: 「低炭素・食料増産型のグリーンケミカル生産システム」の設計から社会実装まで

2023年6月2日(金) 15:00-16:00
工学部3号館大会議室3(6B04号室)(オンラインの場合:https://u-tokyo-ac-jp.zoom.us/j/84034626232?pwd=ZXpPQWIyODhrYVVnWnhYdHdQeHljZz09 ミーティングID: 840 3462 6232 パスコード: 851729)
講演題目世界の環境・食料問題に貢献する化学システム工学: 「低炭素・食料増産型のグリーンケミカル生産システム」の設計から社会実装まで
講演者小原 聡
東京大学未来ビジョン研究センター 特任准教授
概要 サトウキビを原料としたグリーンケミカル生産は,農業や食料生産の持続性,土地利用,温室効果ガス排出削減をはじめとする脱炭素化等の社会的課題が密接に関係している。これらの社会的課題に対して,個別の産業(農業,食品産業,エネルギー産業,化学産業)の技術開発で乗り越えるのは不可能であり,農業・工業の垣根を取り払った農工融合型プロセスの設計と社会実装が必要となる。本セミナーでは,革新的技術(農業側:品種改良による多収性サトウキビ開発,工業側:砂糖回収率を高めるバイオエタノール生産技術「逆転生産プロセス」)の開発を事例として取り上げ,その設計思想から,技術開発,評価,社会実装までの取り組みを紹介し,農業やバイオプロセス分野への化学システム工学の可能性について議論する。
世話人中山哲 (ex. 27270)

第387回化学システム工学専攻公開セミナー 蓄熱輸送を事例として先制的ライフサイクル設計評価

2023年6月2日(金) 14:00-15:00
工学部3号館大会議室3(6B04号室)(オンラインの場合:https://u-tokyo-ac-jp.zoom.us/j/84034626232?pwd=ZXpPQWIyODhrYVVnWnhYdHdQeHljZz09 ミーティングID: 840 3462 6232 パスコード: 851729)
講演者藤井 祥万
東京大学未来ビジョン研究センター 特任講師
概要 持続可能な社会への転換には新興技術の材料(nm~mm)レベル,装置(mm~m)レベル,システム(m~km)レベルをシームレスに接続したうえで,先制的にライフサイクルで評価し,設計にフィードバックする必要がある.
世話人中山哲 (ex. 27270)

第386回化学システム工学専攻公開セミナー Data-driven models for advanced process engineering

講演題目Data-driven models for advanced process engineering
講演者Dr. Bernardo Castro-Dominguez
Assistant Professor
University of Bath, UK
概要The use of data-driven models for chemical applications has accelerated due to its success stories in materials discovery, healthcare, and smart manufacturing. In this seminar, we will describe how chemoinformatics translates the properties of molecules into a digital format for data analysis. In particular, how two-dimensional images of chemical structures can be used as molecular representations. These methods were employed in both classification and regression tasks, and used to predict the solubility of pharmaceuticals, co-crystallization and amorphisation events in mechanochemical settings, and the prediction of crystal morphologies. Beyond images, we will briefly discuss the use of chemometrics used for in-line characterization and process optimization. As case study, Density Functional Theory was used to generate theoretical infrared spectra of various polymers, which then were correlated to a property (e.g. melting point). These spectra-to-property datasets were used to create data-driven models and predict the property of untested ones. All this work follows the vision of developing "agnostic-to-feedstock" processes.
世話人杉山 弘和(内線27227)

第385回化学システム工学専攻公開セミナー Partial Interzeolite Transformation for the Fabrication of Superior Catalysts for the Conversion of Bulky Molecules

Online participation
Meeting ID: 818 8558 4157
Passcode: 638349
講演題目Partial Interzeolite Transformation for the Fabrication of Superior Catalysts for the Conversion of Bulky Molecules
講演者Javier García-Martínez
Laboratorio de Nanotecnología, Molecular, Departamento de Química
Inorgánica, Universidad de Alicante, 03690 Alicante, Spain
概要nterzeolite transformation has been used to produce a novel family of hierarchical catalysts featuring excellent textural properties, strong acidity, and superior catalytic performance for the Friedel−Crafts alkylation of indole with benzhydrol, the Claisen−Schmidt condensation of benzaldehyde and hydroxyacetophenone, and the cracking of polystyrene [1].
Intermediate solids of the FAU interzeolite transformation into BEA display both increased accessibility due to the development of mesoporosity and strong acidity caused by the presence of ultrasmall crystals or zeolitic fragments in their structure. [2]
During the presentation, I will describe a new strategy for the synthesis of superior hierarchical catalysts, whose properties evolve during interzeolite transformation. They are composed of zeolitic fragments and display improved accessibility.
Because of these features, they effectively catalyze reactions involving large molecules.
We realized this strategy for the interconversion of FAU into BEA. Additionally, we used quaternary ammonium surfactants to develop well-defined mesoporosity in the intermediates.
By stopping the interconversion of FAU into BEA at different times, we were able to produce Interzeolite Transformation Intermediates (ITIs) showing optimized catalytic performance.
An important advantage of this strategy is that the physicochemical properties and, therefore the catalytic performance of the hierarchical catalysts can be finely tuned by simply stopping the interzeolite transformation at different times.
This creates countless opportunities for the development of hierarchical catalysts [3] with optimized properties and superior catalytic performance for those reactions in which zeolites present significant diffusion limitations.
Additionally, I will present a new approach we have developed for the fabrication of superior catalytic materials made out of building units from different zeolite structures by partial interzeolite conversion using a long chain quaternary amine, which acts both as a structure directing agent (SDA) and porogen (surfactant).
This method allows to control the amount of the different zeolitic building units in the final material and consequently to optimize its catalytic performance.
We realized this for the cracking of 1,3,5-triisopropylbenzene. Hybrid zeolites yielded a five-hold increase to the desired product at constant conversion over the commercial USY, CBV780, and a 7-fold increase in the conversion of this bulky molecule at constant selectivity over the MFI zeolite

[1] M. J. Mendoza-Castro, E.De Oliveira-Jardim, N.T. Ramírez-Marquez, C. A, N. Linares, J.García-Martínez, J. Am. Chem. Soc., 144(11) 5163–5171 (2022)
[2] G. Fleury, M. J Mendoza-Castro, N. Linares, M. BJ. Roeffaers, J. García-Martínez, ACS Materials Lett. 4 49–54 (2022)
[3] R. Jain, A. Chawla, N. Linares, J. García-Martínez, J.D. Rimer, Adv. Mater. 33(22), 2100897 (2021)
[4] M. J. Mendoza-Castro, Z. Qie, X. Fan, N. Linares, J. García-Martínez, Nature Communications (accepted)
世話人Raquel Simancas(内線 27368)

第384回化学システム工学専攻公開セミナー Catalyst Development for CO2 hydrogenation to C1 oxygenates

講演題目Catalyst Development for CO2 hydrogenation to C1 oxygenates
講演者Prof. Ning Yan
Dean’s Chair Associate Professor,
Head of Green Catalysis Lab
National University of Singapore
概要This talk will mainly introduce our recent efforts in developing improved methanol synthesis catalyst from CO2. In the first work, we introduced an atomic Pd-promoted ZnZrOx solid solution catalyst, which shows enhanced rate of methanol and CO production compared to bare ZnZrOx. Up to 0.8 at.% Pd can be atomically dispersed in ZnZrOx, leading to more oxygen vacancies on the mixed oxide that foster methanol production. In the second work, we developed a strategy to promote ZnZrOx catalyst by incorporating hydrogen activation and delivery functions through optimized integration of ZnZrOx and Pd supported on
carbon nanotube (Pd/CNT). In CO2 hydrogenation to methanol, Pd/CNT+ZnZrOx exhibits drastically boosted activity and excellent stability over 600 h on steam test, showing potential for practical implementation. Lastly, we will briefly touch upon CO2 hydrogenation to formate, and a new concept “Green Chemical Farming” to convert CO2 to food components involving catalytic steps.
世話人高鍋 和広(内線21195)

第383回化学システム工学専攻公開セミナー 小分子転換反応のための規則性シリカ多孔体触媒の合成と触媒評価

2023年2月22日(水) 15:00-17:00
世話人小倉 賢(参加ご希望の方は世話人宛にご連絡ください)