公開セミナー SEMINARS

HOME > セミナー

第404回化学システム工学専攻公開セミナー 触媒内部構造設計とマイクロ波外場印加の協奏による革新的触媒プロセス開発に向けた基礎的研究

日時
2024年1月10日(水)13:00-14:30
場所
工学部3号館大会議室1(6C07号室)
講演題目 触媒内部構造設計とマイクロ波外場印加の協奏による革新的触媒プロセス開発に向けた基礎的研究
講演者 岸本史直
(東京大学大学院工学系研究科化学システム工学専攻 助教)
概要 触媒は、グリーン水素を起点とするカーボンニュートラル化学プロセス開発の中心的役割を果たす。求められる触媒反応は、水素貯蔵・運搬のための水素キャリア製造(アンモニア・有機ハイドライド)、およびその脱水素反応、CO2水素化反応による有用化合物製造など多岐にわたる。加えて、触媒反応の駆動方法にも課題があり、従来型のボイラー加熱などから、局所CO2排出の少ない電力駆動への転換(電化)が望まれている。 講演者は、触媒内部のナノレベル精密設計と、触媒外部からのマイクロ波照射による反応駆動によって、反応活性・触媒寿命・電力駆動の三位一体を目指した革新的触媒プロセスの開発に取り組んできた。内部構造設計においては、担持金属ナノ粒子の近傍に層状二次元材料やミクロ多孔体などを用いたナノ空間を創り出すことで、活性・寿命の向上を目指してきた。また、触媒外部からマイクロ波の印加については、単にエネルギー源を電力に置き換えるのみならず、触媒活性点に対してナノ・原子レベルでのエネルギー集中を可能とし、反応活性・選択性すらも向上できることを実証してきた。本講演では、これらの基礎的研究について紹介するとともに、グリーン水素を起点とした触媒プロセス開発についての今後の展望を述べる。
世話人 中山哲(内線27270)

第403回化学システム工学専攻公開セミナー マルチフィジックスモデルによる電気化学デバイスの定量解析

日時
2024年1月10日(水)10:30-12:00
場所
工学部3号館大会議室1(6C07号室)
講演題目 マルチフィジックスモデルによる電気化学デバイスの定量解析
講演者 小畑圭亮
(東京大学大学院工学系研究科化学システム工学専攻 助教)
概要 近年、再生可能エネルギー由来電力を活用した水電解グリーン水素製造などの電気化学合成技術が注目を集めている。電気化学デバイスの反応速度は熱力学、不均一/均一系反応速度論、物質輸送、流体力学などの一連のプロセスによって決定づけられ、それらの寄与を明らかにすることは効率的なデバイス開発に必須である。本発表では、マルチフィジックスモデルによる水電解反応の定量解析について議論する。また、水電解技術を発展させたグリーンな化学合成技術についても紹介する。
世話人 中山哲(内線27270)

第402回化学システム工学専攻公開セミナー Ultra Clean Contacts on Two-Dimensional Semiconductors

日時
2024年1月15日(月)13:30-15:00
場所
工学部3号館4F 32号室 (工学部3号館 6C06-6C07号室から変更)
講演題目 Ultra Clean Contacts on Two-Dimensional Semiconductors
講演者 Prof. Manish Chhowalla
Materials Science & Metallurgy, University of Cambridge, Cambridge, UK

略歴:
Prof Chhowalla, FREng, is the Goldsmiths’ Professor of Materials Science at the University of Cambridge. His research interests are in the fundamental studies of atomically thin two-dimensional transition metal dichalcogenides (TMDs). In particular, his group studies the optical and electronic properties of different phases of 2D TMDs. He has demonstrated that it is possible to induce phase transformations in atomically thin materials and utilize phases with disparate properties for field effect transistors, catalysis, and energy storage. Prof Chhowalla is a Fellow of the Materials Research Society, Institute of Physics, the Royal Society of Chemistry and Churchill College. He was the founding Editor in Chief of Applied Materials Today and is now the Associate Editor of ACS Nano.
概要 Exploitation of fundamental properties of atomically thin (two-dimensional, 2D) semiconductors – particularly those from the transition metal dichalcogenide (TMD) family – for electronics will require ultra-clean contacts with resistances approaching the quantum limit. The lack of high quality, low contact resistance p- and n-type contacts on 2D semiconductors has limited progress in next generation of low power devices such as the tunnel field effect transistors. In this presentation, we summarize strategies and provide guidance for making clean van der Waals (vdWs) contacts on mono-layered semiconductors that can efficiently inject both spins and charges.
世話人 Vincent Tung(内線28752)

第401回化学システム工学専攻公開セミナー Novel reactivity modes leveraging p-block elements and transition metals towards the synthesis of molecules of interest

日時
2023年12月5日(火)11:00-12:30
場所
工学部3号館6階6C06
講演題目 Novel reactivity modes leveraging p-block elements and transition metals towards the synthesis of molecules of interest
講演者 Dr. Daniel Pla
IHFA, UMR CNRS
概要 p-Block elements alone or assisted by transition metal catalysts have the ability to lower the activation energy towards enabling novel chemical reactions that would not be achievable otherwise. This is best exemplified by cutting-edge innovations in transition metal (nano)catalysis exploiting metal-metal interactions rely on precluding agglomeration pathways leading to catalyst passivation via bulk metal formation. [1] This talk will be divided into two main axes in order to overview both molecular strategies as well as surface-catalyzed transformations using tailored nanoparticle systems with high specific surface areas. With a special emphasis on catalyst design, this presentation will provide an overview on C–C and C–heteroatom couplings and multicomponent metal‐catalyzed reactions with a special emphasis on the selective transformation of C–H bonds via novel strategies comprising both molecular complexes and metal-based nanoparticles with enhanced surface reactivity, thus harnessing sustainable processes. An account of our work focusing on bottom-up strategies for the synthesis of both mono- (Pd, Pt, Ru, Cu, Ni, Co) and bi- metallic nanoparticles (Ni/Co, Pd/Cu) metal-based nanoparticles immobilized both in liquid media (glycerol, biosourced ionic liquids) [2] as well as on inorganic supports (hydrochars, halloysite, hydroxyapatite, TiO 2 , MgAl 2 O 4 ) [3] will be presented with a special emphasis on the metal precursors and the nature of stabilizers (such as amines, ammonium salts, phosphines and biomass-based alkaloids). A combination of techniques has been used for the full characterization of the as-prepared catalytic materials (PXRD, X-ray fluorescence, XPS, XAS, (HR)TEM, FTIR, ssNMR, EPR, magnetization…), as well as to assess their catalytic behavior towards a number of chemical transformations. Efficient catalytic applications by means of C–C homocoupling [4] and (de)hydrogenation reactions together with mechanistic insights will be presented. [5] Moreover, straightforward and atom economical catalytic methods to effect multicomponent reactions via molecular processes streamlining the synthesis of nitrogen-containing heterocycles such as oxazolidinones, and imidazo[1,5- a]pyridines [6] will also be presented using Cu catalysis. Nevertheless, the development of chemical processes to embed main group elements encompasses huge potential towards the development of functional compounds and materials such as molecular switches, frustrated Lewis pairs [7] and trifluoroborate-based probes that can be used as prosthetic groups for [ 18 F]fluorination via F-18 for F-19 isotopic exchange (IEX) in water. [8] Finally, a sequential process combining both multi-component reactions towards the upgrading of green-house gases into amines via a dual catalytic strategy will be presented, namely i) the tri-reforming of methane (TRM) [9] catalyzed by supported Ni-based nanocatalysts for the production of syngas and ii) the hydroaminomethylation (HAM) for the synthesis of homologated terpenic amines from syngas and terpenes, catalyzed by Rh-Co molecular complexes (Figure 1), with an special emphasis on catalyst loading, choice of metal pre-catalysts and ligands/stabilizers, optimization of operating conditions in the quest for efficient catalysts. This original bimetallic catalytic system based on Rh(I) and Co(0) in glycerol afforded the synthesis of terpenic amines taking advantage of cooperative effects. [10] These results represent attractive means to expand the exploration of chemical space through novel synthetic tools to override the dependence on fossil resources.
*If you would like to see a figure and references, please click on the following link
Summary
世話人 高鍋 和広(内線21195)

第400回化学システム工学専攻公開セミナー マルチスケール数理モデルによる生体の理解と制御

日時
2023年10月10日(火)16:00-17:30
場所
工学部5号館53講義室 / Zoom(https://u-tokyo-ac-jp.zoom.us/j/82596354812?pwd=17R0N1mzenOzd1ivRaoNZo5jK8sWo4.1, Meeting ID: 825 9635 4812, Passcode: 505756)
講演題目 マルチスケール数理モデルによる生体の理解と制御
講演者 西川昌輝
(東京大学大学院工学系研究科化学システム工学専攻 講師)
概要 生体は、秒単位で起こる分子レベルの酵素反応から、年単位で観測される臓器レベルの相互作用によるホメオスタシスの維持まで、時空間的に多階層、非線形な存在である。老化、ガン、生活習慣病などの現象解明と治療法の開発には、この多階層、非線形なシステムの理解と、それに基づく制御と予測が必要である。本講演では、肝臓を多階層、非線形な臓器として数理・培養モデル化し、創薬や医療応用を目指す研究について紹介する。特に、時空間的に広がる各階層をつなぐ概念として、化学工学的な物質・熱・エネルギー収支に立ち返り、生体のエネルギー代謝を理解することの重要性を述べる。さらに、多細胞系としての肝疾患モデル構築の試みを紹介し、マルチスケール数理モデルによる生体の理解と制御の利点と展望を議論する。
世話人 中山哲(内線27270)

第399回化学システム工学専攻公開セミナー External Bioartificial Liver: Translational Perspectives

日時
2023年11月6日(月)15:00-17:00
場所
工学部5号館51講義室
講演題目 External Bioartificial Liver: Translational Perspectives
講演者 Prof. Cécile Legallais, CNRS Research Director
Université de Technologie de Compiègne, UMR CNRS 7338 Biomechanics &
Bioengineering
概要 Liver supply systems are still needed in clinical situation due to the increasing organ shortage. However, none of the bioartificial livers developed in the past have been commercialized yet. After analyzing the past, we will present the new approaches. Among them, the culture of cells as spheroids/organoids in alginate beads appears as an interesting option. We evaluated some of the major functions of hepatic cells in such environment and propose a complete set up at human scale for liver supply. We will discuss here the advantages of microencapsulation and the questions regarding the type of cells to be used in such system.
世話人 酒井康行(内線27751)

第398回化学システム工学専攻公開セミナー Process Systems Engineering in an Area of Big Data and AI: Challenges and Opportunities

日時
2023年10月12日(木)14:15~15:45
場所
工学部2号館211講義室
講演題目 Process Systems Engineering in an Area of Big Data and AI: Challenges and Opportunities
講演者 Prof. Marianthi Ierapetrigou
Department of Chemical & Biomolecular Engineering
Bob and Jane Gore Centennial Chair of Chemical & Biomolecular Engineering
University of Delaware
概要 The data revolution demands the Process Systems Engineering (PSE) community to adapt the methodologies to fully leverage the additional resources for accurate representation of processes and detailed analyses. The approaches can facilitate process development, system analysis, and optimization, supporting goals in areas like sustainability, circular economy, and public health. Process modeling remains a critical PSE tool to describe complex physical processes based on system understanding. With data revolution, there are challenges in incorporating information of different scales, and in the extent of data involvement. To acquire comprehensive process understanding, efficient PSE tools such as sensitivity analysis, feasibility analysis, life cycle assessment (LCA), and technoeconomic analysis (TEA) can be applied for analysis with data from experiments, pilot plants, databases, and/or models. Using the developed models, optimization can be performed to identify optimal conditions of the most important variables identified using sensitivity analysis, while satisfying important operability and product quality constraints. Such in silico optimization results can provide insights to the experimental work, but as model complexity increases, the optimization task becomes computationally demanding. In the implementation of all these tools, data uncertainty is a critical issue and uncertainty quantification (UQ) approaches can be applied to address this issue. In this talk, we will discuss our group’s work towards developing these tools and highlight their application in pharmaceutical advanced manufacturing and towards sustainable chemical production.
世話人 杉山 弘和(内線27227)

第397回化学システム工学専攻公開セミナー Energy, environmental, and food security implications of a net-zero CO2 emissions chemical industry

日時
2023年11月27日(月) 17:00-18:00
場所
Zoom ( https://u-tokyo-ac-jp.zoom.us/j/88272842701?pwd=UkJlYmd4cHY5M1M5UGNMSXJjOVNIdz09 , Meeting ID: 882 7284 2701 , Passcode: 526405)
講演題目 Energy, environmental, and food security implications of a net-zero CO2 emissions chemical industry
講演者 Dr. Paolo Gabrielli
Senior Scientist
Institute of Energy and Process Engineering
ETH Zurich
概要 To limit global warming below 1.5°C, all anthropogenic activities will have to reach net-zero CO2 emissions by mid-century. The chemical industry is responsible for about 5% of global CO2 emissions and is key to achieving net-zero targets. Decarbonizing this industry, nevertheless, faces a special challenge in that a large fraction of chemical products contain carbon. Yet, multiple technology routes are now available for producing chemicals with net-zero CO2 emissions based on biomass, recycling, and carbon capture, utilization, and storage. However, the extent to which these routes are viable with respect to the local availability of energy and natural resources remains unclear. In this seminar, I compare net-zero routes by quantifying their energy, land, and water requirements and the corresponding induced resource scarcity at the country-level, and further discuss the technical and environmental viability of a net-zero chemical industry. Furthermore, I dive into ammonia and fertilizers production to investigate the energy and food security implications of net-zero nitrogen fertilizers. Finally, I present the optimal design of net-zero hydrogen supply chains, which will be needed to supply hydrogen to chemical plants, and possibly other plants, in a world of net-zero emissions.
世話人 Sara Badr(内線26876)

第396回化学システム工学専攻公開セミナー Microwave Catalyst Design for Heterogeneous Reactions at National Energy Technology Laboratory

日時
2023年10月5日(木)15:00-16:30
場所
工学部3号館31号室
講演題目 Microwave Catalyst Design for Heterogeneous Reactions at National Energy Technology Laboratory
講演者 Dr. Christina Wildfire
Research Engineer
Energy Conversion Engineering Directorate
National Energy Technology Laboratory (US)
概要 National Energy Technology Laboratory (NETL) is exploring microwave-assisted technologies for a wide range of chemical conversion processes such as ammonia reactions, methane dehydroaromatization (DHA), CO2 conversion, and mixed waste conversion using heterogeneous catalysis. With the direct interaction of the electromagnetic field with the solid material, catalysis design has to be re-examined. However, the lack of a fundamental understanding of the underlying mechanistic and kinetic phenomena leading to the enhanced performance characteristics hinders the advancement of this technology and makes scaling from the laboratory-scale to commercialization difficult. R&D at NETL is devoted to understanding the fundamental microwave-material interactions, reaction chemistry, and kinetics, which will allow greater control over reaction mechanisms and lead to enhanced performance of microwave-assisted catalytic reactions. The lab is developing a one-of-a kind characterization facility to study these surface effects in-situ so that modeling of the materials can be improved and used in material and microwave cavity designs. In this talk, the application of microwaves to different reactions will be addressed to demonstrate the potential benefits. The research challenges for the MW-assisted reaction would also be addressed.
世話人 岸本史直(内線26157)

第395回化学システム工学専攻公開セミナー Solid State Batteries – from interfaces to high energy density

日時
2023年9月25日(月)15:00-16:00
場所
工学部5号館51講義室
講演題目 Solid State Batteries – from interfaces to high energy density
講演者 Prof. Jihui Yang
Materials Science and Engineering Department
University of Washington
概要 The use of solid electrolytes in Lithium-ion batteries has several promises, most noticeably improved safety, quicker charging times, and longer ranges for electric vehicle applications. This talk will consider some of the options and challenges. I will show that high energy and long cycle life could be achieved in solid state batteries via optimizing the interfacial thermodynamics. This is also the case for liquid-based Lithium-ion batteries with the separator coated by solid electrolytes.
世話人 山田淳夫(内線27295)