公開セミナー SEMINARS

HOME > セミナー

第393回化学システム工学専攻公開セミナー Population and physiologically-based pharmacokinetic modelling for therapeutic dose finding in drug development

日時
2023年7月4日(火)14:00-15:00
場所
工学部5号館51号室
講演題目 Population and physiologically-based pharmacokinetic modelling for therapeutic dose finding in drug development
講演者 Yumi Cleary
Clinical Pharmacometrics, Roche Pharma Research and Early Development, Roche
Innovation Center Basel, Basel, Switzerland;
Centre for Applied Pharmacokinetic Research, University of Manchester,
Manchester, UK
概要 Therapeutic dose finding is a critical element of drug development. Understanding the pharmacokinetics (PK) of a new chemical entity (NCE) is one of the prerequisites for dose finding. Therefore, PK modelling, typically population PK and physiologically-based PK (PPK and PBPK) modelling, are routinely conducted during the clinical development of a NCE. In this talk, I will introduce the basic drug development process and concept of PPK and PBPK modelling. As a case example, I will explain how PPK and PBPK modelling, respectively, was conducted to support the clinical development of risdiplam, which has been approved for the treatment of spinal muscular atrophy. I will discuss the challenges in the modelling to find the dosing regimen to achieve the target exposure consistently across the heterogeneous patient population, including 2-months-old infants to 61-year-old patients, and the utility of such modelling to provide guidance for drug labels in lieu of clinical studies.
世話人 杉山 弘和(内線27227)

第392回化学システム工学専攻公開セミナー Real time monitoring and control of downstream processing of biopharmaceuticals

日時
2023年7月12日(水)10:00-11:00
場所
工学部3号館6C07号室
講演題目 Real time monitoring and control of downstream processing of biopharmaceuticals
講演者 Prof. Alois Jungbauer
Department of Biotechnology
University of Natural Resources and Life Sciences Vienna
(BOKU), Austria
Austrian Centre of Industrial Biotechnology
概要 The biopharmaceutical industry is still running in batch mode, mostly because it is a highly regulated industry sector. In the past, sensors were not readily available and in-process control was mainly executed off-line. The most important product parameters are quantity, purity and potency besides adventitious agents and bioburden. In order to ensure the quality of pharmaceuticals initiatives such as Process Analytical Technologies, Quality by Design and Continuous Integrated Manufacturing have been established. The vision must be that these initiatives together with technology development pave the way for process automation and autonomous bioprocessing without any human intervention. Then a real-time release would be realized leading to a highly predictive and robust biomanufacturing system. The steps toward such automated and autonomous bioprocessing will be presented in context of monitoring and control. Starting from statistical treatment of single and multiple sensors, establishing soft sensors with predictive chemometrics and hybrid models. A scenario is described how to integrate soft sensors and predictive chemometrics into modern process control. This will be exemplified by selective downstream processing steps such as chromatography and membrane filtration, the most common unit operations for separation of biopharmaceuticals.
世話人 Sara Badr(内線26876)

第391回化学システム工学専攻公開セミナー Plasmonic Colloidosomes of Black Gold For Solar Energy Harvesting and CO2 To Fuel Conversion

日時
2023年5月29日(月)13:00-15:00
場所
工学部5号館51号室
講演題目 Plasmonic Colloidosomes of Black Gold For Solar Energy Harvesting and CO2 To Fuel Conversion
講演者 Prof. Vivek Polshettiwar
Department of Chemical Sciences, Tata Institute of Fundamental Research
(TIFR), Mumbai, India.
http://www.nanocat.co.in/
概要 The catalytic conversion of CO2 into valuable solar fuels and chemicals is an appealing way to recycle carbon while addressing global warming and the energy issue. In this regard, we discovered a range of Dendritic Fibrous Nano-Silica (DFNS),1,2 based catalysts and CO2 sorbents, such as Black Gold3, Defective Catalyst4,5, Solid Acids6, Lithium Silicates Nanosheets7, Magnesium8 and Ni3N Nanosheets9. In this talk, I will discuss solar energy harvesting and CO2 utilization, using the concept of “Black Gold”. We transformed yellow gold into black gold by changing the size and gaps between gold nanoparticles supported on DFNS.3 Black gold harvest board band light of the solar spectrum, the entire visible region, as well as in the near-infrared region. We have then shown nickel-laden black gold catalysts with a very high photocatalytic CO production rate (2464 ± 40 mmolgNi-1h-1), 95 % selectivity and stable for at least 100 h.10 The role of plasmon excitation (& hot electrons-holes) was studied by: (1) light intensity-dependent production rate, (2) wavelength-dependent
production rate, (3) kinetic isotope effect (KIE), (4) light intensity-dependent photocatalytic quantum efficiencies, (5) competitive CO2 hydrogenation in the presence of electron quencher, methyl-p-benzoquinone (MBQ), and (6) nanosecond transient absorption spectroscopy. The molecular reaction mechanism of CO2 hydrogenation was studied by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS).10 Black Gold-Ni also catalyzes several other challenging reactions, such as H2 dissociation, C-Cl bond activation, and propene & acetylene hydrogenation.11

References:
1. V. Polshettiwar, Acc. Chem. Res., 55, 1395 (2022).
2. A. Maity, R. Belgamwar, V. Polshettiwar Nature Protocol, 14, 2177 (2019).
3. M. Dhiman, A. Maity, A, Das, R. Belgamwar, B. Chalke, Y. Lee, K. Sim, J. M. Nam, V. Polshettiwar, Chemical Science 10, 6694 (2019).
4. A. K. Mishra, R. Belgamwar, R. Jana, A. Datta, V. Polshettiwar Proc. Natl. Acad. Sci. U.S.A 117, 6383 (2020).
5. R. Belgamwar, R. Verma, T. Das, S. Chakraborty, P. Sarawade, V. Polshettiwar, J. Am. Chem. Soc., 145, 8634-8646 (2023).
6. A. Maity, S. Chaudhari, J. J. Titman, V. Polshettiwar Nature Comm. 11, 3828 (2020).
7. R. Belgamwar, A. Maity, T. Das, S. Chakraborty, C. P. Vinod, V. Polshettiwar Chemical Science, 12, 4825 (2021).
8. S. A. Rawool, R. Belgamwar, R. Jana, A. Maity, A. Bhumla, N. Yigit, A. Datta, G. Rupprechter, V. Polshettiwar, Chemical Science, 12, 5774 (2021).
9. S. Singh, R. Verma, N. Kaul, J. Sa, A. Punjal, S. Prabhu, V. Polshettiwar, Nature Commun. 14, 2551 (2023).
10. R. Verma, R. Belgamwar, P. Chatterjee, R. B. Vadell, J. Sá, V. Polshettiwar, ACS Nano, 17, 4526 (2023).
11. R. Verma, R. Tyagi, V. K. Voora, V. Polshettiwar, ACS Catal. 13, 7395 (2023).
世話人 高鍋 和広(内線21195)

第390回化学システム工学専攻公開セミナー Application of mechanistic and data-driven models to continuous tablet manufacturing with knowledge of pharmaceutical science

日時
2023年5月31日(水) 13:30-14:30
場所
工学部11号館 ハセコークマホール
講演題目 Application of mechanistic and data-driven models to continuous tablet manufacturing with knowledge of pharmaceutical science
講演者 Dr. Kensaku Matsunami
Postdoctoral researcher, Ghent University
概要 Process systems engineering plays a critical role in the process design of continuous tablet manufacturing, which is a novel technology. Numerous researchers have worked on process simulation using both mechanistic and data-driven models. Toward efficient process design, it is important to select appropriate modeling techniques and interpret the results based on knowledge of pharmaceutical science. This seminar will give different types of modeling studies in continuous tablet manufacturing, which I have performed through my Ph.D. at the University of Tokyo and my postdoctoral research at Ghent University. As an example of mechanistic modeling, population balance models have been applied to the simulation of particle size distributions in wet granulation. Hybrid and surrogate modeling approaches will extend the applicability of models to different active pharmaceutical ingredients and real-time release testing. Furthermore, an in-depth understanding of material properties as well as unit operations can help with model development and interpretation.
世話人 杉山 弘和(内線27227)

第389回化学システム工学専攻公開セミナー 標的指向型高速クリック反応素子の開発と生体分子への応用

日時
2023年6月12日(月) 9:00-10:00
場所
工学部5号館7階 第4輪講室
講演題目 標的指向型高速クリック反応素子の開発と生体分子への応用
講演者 寺 正行
東京農工大学大学院工学研究院 准教授(テニュアトラック)
概要 クリック反応の代表例である歪み促進型アルキン-アジド付加環化(SPAAC)反応は、生体分子の連結反応に広く用いられている。しかし、SPAAC反応を生体分子へ応用する際に、反応速度の遅さがしばしば問題となる。これまでに反応性の向上のため様々な歪みアルキン骨格が開発されてきが、反応速度と化学的安定性はトレードオフの関係にある。講演者は、標的とする生体分子に応じた標的指向性を付与することで、化学安定性を維持したまま反応速度を1000倍以上加速できる水溶性歪みジイン化合物(WS-COSY)を開発してきた。本講演では、WS-CODYの開発の経緯と核酸・タンパク質・細胞表面糖鎖への応用について議論する。
世話人 伊藤(内線21425)

第388回化学システム工学専攻公開セミナー 世界の環境・食料問題に貢献する化学システム工学: 「低炭素・食料増産型のグリーンケミカル生産システム」の設計から社会実装まで

日時
2023年6月2日(金) 15:00-16:00
場所
工学部3号館大会議室3(6B04号室)(オンラインの場合:https://u-tokyo-ac-jp.zoom.us/j/84034626232?pwd=ZXpPQWIyODhrYVVnWnhYdHdQeHljZz09 ミーティングID: 840 3462 6232 パスコード: 851729)
講演題目 世界の環境・食料問題に貢献する化学システム工学: 「低炭素・食料増産型のグリーンケミカル生産システム」の設計から社会実装まで
講演者 小原 聡
東京大学未来ビジョン研究センター 特任准教授
概要  サトウキビを原料としたグリーンケミカル生産は,農業や食料生産の持続性,土地利用,温室効果ガス排出削減をはじめとする脱炭素化等の社会的課題が密接に関係している。これらの社会的課題に対して,個別の産業(農業,食品産業,エネルギー産業,化学産業)の技術開発で乗り越えるのは不可能であり,農業・工業の垣根を取り払った農工融合型プロセスの設計と社会実装が必要となる。本セミナーでは,革新的技術(農業側:品種改良による多収性サトウキビ開発,工業側:砂糖回収率を高めるバイオエタノール生産技術「逆転生産プロセス」)の開発を事例として取り上げ,その設計思想から,技術開発,評価,社会実装までの取り組みを紹介し,農業やバイオプロセス分野への化学システム工学の可能性について議論する。
世話人 中山哲 (ex. 27270)

第387回化学システム工学専攻公開セミナー 蓄熱輸送を事例として先制的ライフサイクル設計評価

日時
2023年6月2日(金) 14:00-15:00
場所
工学部3号館大会議室3(6B04号室)(オンラインの場合:https://u-tokyo-ac-jp.zoom.us/j/84034626232?pwd=ZXpPQWIyODhrYVVnWnhYdHdQeHljZz09 ミーティングID: 840 3462 6232 パスコード: 851729)
講演題目 蓄熱輸送を事例として先制的ライフサイクル設計評価
講演者 藤井 祥万
東京大学未来ビジョン研究センター 特任講師
概要  持続可能な社会への転換には新興技術の材料(nm~mm)レベル,装置(mm~m)レベル,システム(m~km)レベルをシームレスに接続したうえで,先制的にライフサイクルで評価し,設計にフィードバックする必要がある.
 ゼオライトの水蒸気吸脱着を用いた蓄熱輸送システムを事例に,上記の「nm~kmのシームレスな接続による先制的ライフサイクル設計評価」を紹介する.具体的には,装置設計に反映させるための物質輸送と熱輸送を切り分けたリアクター試験やその結果を用いて設計したベンチスケールの小規模実証試験,小規模実証試験により妥当性を確認した数値解析によるフルスケールの設計とその結果のLCAへの反映,さらなる技術開発へのフィードバックの一連の流れを紹介する.
世話人 中山哲 (ex. 27270)

第386回化学システム工学専攻公開セミナー Data-driven models for advanced process engineering

日時
2023年3月29日(水)15:00-16:00
場所
工学部3号館6C06号室
講演題目 Data-driven models for advanced process engineering
講演者 Dr. Bernardo Castro-Dominguez
Assistant Professor
University of Bath, UK
概要 The use of data-driven models for chemical applications has accelerated due to its success stories in materials discovery, healthcare, and smart manufacturing. In this seminar, we will describe how chemoinformatics translates the properties of molecules into a digital format for data analysis. In particular, how two-dimensional images of chemical structures can be used as molecular representations. These methods were employed in both classification and regression tasks, and used to predict the solubility of pharmaceuticals, co-crystallization and amorphisation events in mechanochemical settings, and the prediction of crystal morphologies. Beyond images, we will briefly discuss the use of chemometrics used for in-line characterization and process optimization. As case study, Density Functional Theory was used to generate theoretical infrared spectra of various polymers, which then were correlated to a property (e.g. melting point). These spectra-to-property datasets were used to create data-driven models and predict the property of untested ones. All this work follows the vision of developing "agnostic-to-feedstock" processes.
世話人 杉山 弘和(内線27227)

第385回化学システム工学専攻公開セミナー Partial Interzeolite Transformation for the Fabrication of Superior Catalysts for the Conversion of Bulky Molecules

日時
2023年2月13日(月)13:30-15:00
場所
工学部3号館6C06号室
Online participation
https://u-tokyo-ac-jp.zoom.us/j/81885584157?pwd=aVJTUW1mUXBnNkJETTRXQjRoczN2dz09
Meeting ID: 818 8558 4157
Passcode: 638349
講演題目 Partial Interzeolite Transformation for the Fabrication of Superior Catalysts for the Conversion of Bulky Molecules
講演者 Javier García-Martínez
Laboratorio de Nanotecnología, Molecular, Departamento de Química
Inorgánica, Universidad de Alicante, 03690 Alicante, Spain
https://nanomol.es/en/
概要 nterzeolite transformation has been used to produce a novel family of hierarchical catalysts featuring excellent textural properties, strong acidity, and superior catalytic performance for the Friedel−Crafts alkylation of indole with benzhydrol, the Claisen−Schmidt condensation of benzaldehyde and hydroxyacetophenone, and the cracking of polystyrene [1].
Intermediate solids of the FAU interzeolite transformation into BEA display both increased accessibility due to the development of mesoporosity and strong acidity caused by the presence of ultrasmall crystals or zeolitic fragments in their structure. [2]
During the presentation, I will describe a new strategy for the synthesis of superior hierarchical catalysts, whose properties evolve during interzeolite transformation. They are composed of zeolitic fragments and display improved accessibility.
Because of these features, they effectively catalyze reactions involving large molecules.
We realized this strategy for the interconversion of FAU into BEA. Additionally, we used quaternary ammonium surfactants to develop well-defined mesoporosity in the intermediates.
By stopping the interconversion of FAU into BEA at different times, we were able to produce Interzeolite Transformation Intermediates (ITIs) showing optimized catalytic performance.
An important advantage of this strategy is that the physicochemical properties and, therefore the catalytic performance of the hierarchical catalysts can be finely tuned by simply stopping the interzeolite transformation at different times.
This creates countless opportunities for the development of hierarchical catalysts [3] with optimized properties and superior catalytic performance for those reactions in which zeolites present significant diffusion limitations.
Additionally, I will present a new approach we have developed for the fabrication of superior catalytic materials made out of building units from different zeolite structures by partial interzeolite conversion using a long chain quaternary amine, which acts both as a structure directing agent (SDA) and porogen (surfactant).
This method allows to control the amount of the different zeolitic building units in the final material and consequently to optimize its catalytic performance.
We realized this for the cracking of 1,3,5-triisopropylbenzene. Hybrid zeolites yielded a five-hold increase to the desired product at constant conversion over the commercial USY, CBV780, and a 7-fold increase in the conversion of this bulky molecule at constant selectivity over the MFI zeolite

[1] M. J. Mendoza-Castro, E.De Oliveira-Jardim, N.T. Ramírez-Marquez, C. A, N. Linares, J.García-Martínez, J. Am. Chem. Soc., 144(11) 5163–5171 (2022)
[2] G. Fleury, M. J Mendoza-Castro, N. Linares, M. BJ. Roeffaers, J. García-Martínez, ACS Materials Lett. 4 49–54 (2022)
[3] R. Jain, A. Chawla, N. Linares, J. García-Martínez, J.D. Rimer, Adv. Mater. 33(22), 2100897 (2021)
[4] M. J. Mendoza-Castro, Z. Qie, X. Fan, N. Linares, J. García-Martínez, Nature Communications (accepted)
世話人 Raquel Simancas(内線 27368)

第384回化学システム工学専攻公開セミナー Catalyst Development for CO2 hydrogenation to C1 oxygenates

日時
2023年1月23日(月)15:00-16:30
場所
工学部5号館51号室
講演題目 Catalyst Development for CO2 hydrogenation to C1 oxygenates
講演者 Prof. Ning Yan
Dean’s Chair Associate Professor,
Head of Green Catalysis Lab
National University of Singapore
http://yan-group-nus.com/
概要 This talk will mainly introduce our recent efforts in developing improved methanol synthesis catalyst from CO2. In the first work, we introduced an atomic Pd-promoted ZnZrOx solid solution catalyst, which shows enhanced rate of methanol and CO production compared to bare ZnZrOx. Up to 0.8 at.% Pd can be atomically dispersed in ZnZrOx, leading to more oxygen vacancies on the mixed oxide that foster methanol production. In the second work, we developed a strategy to promote ZnZrOx catalyst by incorporating hydrogen activation and delivery functions through optimized integration of ZnZrOx and Pd supported on
carbon nanotube (Pd/CNT). In CO2 hydrogenation to methanol, Pd/CNT+ZnZrOx exhibits drastically boosted activity and excellent stability over 600 h on steam test, showing potential for practical implementation. Lastly, we will briefly touch upon CO2 hydrogenation to formate, and a new concept “Green Chemical Farming” to convert CO2 to food components involving catalytic steps.
世話人 高鍋 和広(内線21195)