公開セミナー SEMINARS

HOME > セミナー > Plasmonic Colloidosomes of Black Gold For Solar Energy Harvesting and CO2 To Fuel Conversion

第391回化学システム工学専攻公開セミナー Plasmonic Colloidosomes of Black Gold For Solar Energy Harvesting and CO2 To Fuel Conversion

日時
2023年5月29日(月)13:00-15:00
場所
工学部5号館51号室
講演題目 Plasmonic Colloidosomes of Black Gold For Solar Energy Harvesting and CO2 To Fuel Conversion
講演者 Prof. Vivek Polshettiwar
Department of Chemical Sciences, Tata Institute of Fundamental Research
(TIFR), Mumbai, India.
http://www.nanocat.co.in/
概要 The catalytic conversion of CO2 into valuable solar fuels and chemicals is an appealing way to recycle carbon while addressing global warming and the energy issue. In this regard, we discovered a range of Dendritic Fibrous Nano-Silica (DFNS),1,2 based catalysts and CO2 sorbents, such as Black Gold3, Defective Catalyst4,5, Solid Acids6, Lithium Silicates Nanosheets7, Magnesium8 and Ni3N Nanosheets9. In this talk, I will discuss solar energy harvesting and CO2 utilization, using the concept of “Black Gold”. We transformed yellow gold into black gold by changing the size and gaps between gold nanoparticles supported on DFNS.3 Black gold harvest board band light of the solar spectrum, the entire visible region, as well as in the near-infrared region. We have then shown nickel-laden black gold catalysts with a very high photocatalytic CO production rate (2464 ± 40 mmolgNi-1h-1), 95 % selectivity and stable for at least 100 h.10 The role of plasmon excitation (& hot electrons-holes) was studied by: (1) light intensity-dependent production rate, (2) wavelength-dependent
production rate, (3) kinetic isotope effect (KIE), (4) light intensity-dependent photocatalytic quantum efficiencies, (5) competitive CO2 hydrogenation in the presence of electron quencher, methyl-p-benzoquinone (MBQ), and (6) nanosecond transient absorption spectroscopy. The molecular reaction mechanism of CO2 hydrogenation was studied by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS).10 Black Gold-Ni also catalyzes several other challenging reactions, such as H2 dissociation, C-Cl bond activation, and propene & acetylene hydrogenation.11

References:
1. V. Polshettiwar, Acc. Chem. Res., 55, 1395 (2022).
2. A. Maity, R. Belgamwar, V. Polshettiwar Nature Protocol, 14, 2177 (2019).
3. M. Dhiman, A. Maity, A, Das, R. Belgamwar, B. Chalke, Y. Lee, K. Sim, J. M. Nam, V. Polshettiwar, Chemical Science 10, 6694 (2019).
4. A. K. Mishra, R. Belgamwar, R. Jana, A. Datta, V. Polshettiwar Proc. Natl. Acad. Sci. U.S.A 117, 6383 (2020).
5. R. Belgamwar, R. Verma, T. Das, S. Chakraborty, P. Sarawade, V. Polshettiwar, J. Am. Chem. Soc., 145, 8634-8646 (2023).
6. A. Maity, S. Chaudhari, J. J. Titman, V. Polshettiwar Nature Comm. 11, 3828 (2020).
7. R. Belgamwar, A. Maity, T. Das, S. Chakraborty, C. P. Vinod, V. Polshettiwar Chemical Science, 12, 4825 (2021).
8. S. A. Rawool, R. Belgamwar, R. Jana, A. Maity, A. Bhumla, N. Yigit, A. Datta, G. Rupprechter, V. Polshettiwar, Chemical Science, 12, 5774 (2021).
9. S. Singh, R. Verma, N. Kaul, J. Sa, A. Punjal, S. Prabhu, V. Polshettiwar, Nature Commun. 14, 2551 (2023).
10. R. Verma, R. Belgamwar, P. Chatterjee, R. B. Vadell, J. Sá, V. Polshettiwar, ACS Nano, 17, 4526 (2023).
11. R. Verma, R. Tyagi, V. K. Voora, V. Polshettiwar, ACS Catal. 13, 7395 (2023).
世話人 高鍋 和広(内線21195)